Casio fx-7200G

Datasheet legend
Ab/c: Fractions calculation
AC: Alternating current
BaseN: Number base calculations
Card: Magnetic card storage
Cmem: Continuous memory
Cond: Conditional execution
Const: Scientific constants
Cplx: Complex number arithmetic
DC: Direct current
Eqlib: Equation library
Exp: Exponential/logarithmic functions
Fin: Financial functions
Grph: Graphing capability
Hyp: Hyperbolic functions
Ind: Indirect addressing
Intg: Numerical integration
Jump: Unconditional jump (GOTO)
Lbl: Program labels
LCD: Liquid Crystal Display
LED: Light-Emitting Diode
Li-ion: Lithium-ion rechargeable battery
Lreg: Linear regression (2-variable statistics)
mA: Milliamperes of current
Mtrx: Matrix support
NiCd: Nickel-Cadmium rechargeable battery
NiMH: Nickel-metal-hydrite rechargeable battery
Prnt: Printer
RTC: Real-time clock
Sdev: Standard deviation (1-variable statistics)
Solv: Equation solver
Subr: Subroutine call capability
Symb: Symbolic computing
Tape: Magnetic tape storage
Trig: Trigonometric functions
Units: Unit conversions
VAC: Volts AC
VDC: Volts DC
Years of production: 1986  Display type: Graphical display  
New price:   Display color: Black  
    Display technology: Liquid crystal display 
Size: 6½"×3½"×½" Display size: 96×64 pixels
Weight: 6 oz    
    Entry method: Formula entry 
Batteries: 3×"CR-2032" Lithium Advanced functions: Trig Exp Hyp Lreg Grph Ab/c Cmem BaseN 
External power:   Memory functions:  
I/O:      
    Programming model: Formula programming 
Precision: 13 digits Program functions: Jump Cond Subr Lbl Ind  
Memories: 78(26) numbers Program display: Formula display  
Program memory: 422 bytes Program editing: Formula entry  
Chipset:   Forensic result:  

fx7200g.jpg (28599 bytes)The fx-7200G appears to be yet another variant of Casio's classic family of graphing calculators that began with the fx-7000G. The two models seem to differ only in appearance; functionally, they are identical.

The following program demonstrates this calculator's programming model by computing the logarithm of the Gamma function to a high degree of precision using Stirling's approximation:

Ans->X
1->Y
Lbl 1
X>5=>Goto 2
XY->Y
X+1->X
Goto 1
Lbl 2
Xln X-X+ln (2π÷X)÷2+((((1÷1188X²-1÷1680)÷X²+
           1÷1260)÷X²-1÷360)÷X²+1÷12)÷X-ln Y