Hewlett-Packard HP-19B
Datasheet legend
Ab/c:
Fractions calculation
AC: Alternating current BaseN: Number base calculations Card: Magnetic card storage Cmem: Continuous memory Cond: Conditional execution Const: Scientific constants Cplx: Complex number arithmetic DC: Direct current Eqlib: Equation library Exp: Exponential/logarithmic functions Fin: Financial functions Grph: Graphing capability Hyp: Hyperbolic functions Ind: Indirect addressing Intg: Numerical integration Jump: Unconditional jump (GOTO) Lbl: Program labels LCD: Liquid Crystal Display LED: Light-Emitting Diode Li-ion: Lithium-ion rechargeable battery Lreg: Linear regression (2-variable statistics) mA: Milliamperes of current Mtrx: Matrix support NiCd: Nickel-Cadmium rechargeable battery NiMH: Nickel-metal-hydrite rechargeable battery Prnt: Printer RTC: Real-time clock Sdev: Standard deviation (1-variable statistics) Solv: Equation solver Subr: Subroutine call capability Symb: Symbolic computing Tape: Magnetic tape storage Trig: Trigonometric functions Units: Unit conversions VAC: Volts AC VDC: Volts DC |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Hewlett-Packard HP-19B
The HP-19B is one of the most sophisticated business calculators manufactured by Hewlett-Packard. It is the same folding design as the HP-28S scientific calculator, and shares some of that machine's features, including a relatively large, graphical display. Like its close relative, the HP-17B, the HP-19B also has the "SOLVE" feature as a form of programmability, and includes the conditional function IF and the summation function Σ.
The example I developed for this calculator is an implementation of the Gamma function, extended over the domain of negative numbers with the use of the conditional and summation functions.
G=(-1)^Σ(I:X:0:1:1)×EXP(LN(2.50662827511×(X+Σ(I:X:0:1:1))^6+ 83.8676043424×(X+Σ(I:X:0:1:1))^5+1168.92649479×(X+Σ(I:X:0:1:1))^4+ 8687.24529705×(X+Σ(I:X:0:1:1))^3+36308.2951477×(X+Σ(I:X:0:1:1))^2+ 80916.6278952×(X+Σ(I:X:0:1:1))+75122.633153)- Σ(I:0:6:1:LN(X+Σ(J:X:0:1:1)+I))+(X+Σ(I:X:0:1:1)+.5)× LN(X+Σ(I:X:0:1:1)+5.5)-X-Σ(I:X:0:1:1)-5.5-Σ(I:X:0:1:LN(-I)))